Enzyme Commission Number
EC 3.5.99.7
Product Overview
High-quality enzyme products.
Well-established quality management system.
Reaction
1-aminocyclopropane-1-carboxylate + H2O = 2-oxobutanoate + NH3 (overall reaction)
(1a) 1-aminocyclopropane-1-carboxylate = 2-aminobut-2-enoate
(1b) 2-aminobut-2-enoate = 2-iminobutanoate (spontaneous)
(1c) 2-iminobutanoate + H2O = 2-oxobutanoate + NH3 (spontaneous)
Systematic Name
1-aminocyclopropane-1-carboxylate aminohydrolase (isomerizing)
Function
A pyridoxal 5′-phosphate enzyme. The enzyme, found in certain soil bacteria and fungi, catalyses the ring opening of 1-aminocyclopropane-1-carboxylate, the immediate precursor to ethylene, an important plant hormone that regulates fruit ripening and other processes. The enzyme releases an unstable enamine product that tautomerizes to an imine form, which undergoes a hydrolytic deamination. The latter reaction, which can occur spontaneously, can also be catalysed by EC 3.5.99.10, 2-iminobutanoate/2-iminopropanoate deaminase. The enzyme has been used to make fruit ripening dependent on externally added ethylene, as it removes the substrate for endogenous ethylene formation.
Other name
1-aminocyclopropane-1-carboxylate endolyase (deaminating); ACC deaminase; 1-aminocyclopropane carboxylic acid deaminase
Production Methods
Fermentation
Package
on customer request
Applications
Research Use
Storage
Should be stored in a dry and cool place, avoiding high temperature.
Appearance / Form
powder or liquid
Odor
Normal microbial fermentation odour.
WARNINGS
Keep sealed after use every time to avoid microbial infections and inactivation of enzymes until its finish.
Description
Microbial enzymes have been used in a large number of fields, such as chemical, agricultural and biopharmaceutical industries. Our enzyme production services are based on bacteria, fungi, and yeast, from strain selection, optimization, and process development to scale-up production.