Enzyme Commission Number
EC 1.17.4.2
Product Overview
High-quality enzyme products.
Well-established quality management system.
Reaction
2′-deoxyribonucleoside 5′-triphosphate + thioredoxin disulfide + H2O = ribonucleoside 5′-triphosphate + thioredoxin
Systematic Name
2′-deoxyribonucleoside-5′-triphosphate:thioredoxin-disulfide 2′-oxidoreductase
Function
The enzyme, characterized from the bacterium Lactobacillus leichmannii, is similar to class II ribonucleoside-diphosphate reductase (cf. EC 1.17.4.1). However, it is specific for the triphosphate versions of its substrates. The enzyme contains an adenosylcobalamin cofactor that is involved in generation of a transient thiyl (sulfanyl) radical on a cysteine residue. This radical attacks the substrate, forming a ribonucleotide 3′-radical, followed by water loss to form a ketyl (α-oxoalkyl) radical. The ketyl radical is reduced to 3′-keto-deoxynucleotide concomitant with formation of a disulfide anion radical between two cysteine residues. A proton-coupled electron-transfer from the disulfide radical to the substrate generates a 3′-deoxynucleotide radical, and the final product is formed when the hydrogen atom that was initially removed from the 3′-position of the nucleotide by the thiyl radical is returned to the same position. The disulfide bridge is reduced by the action of thioredoxin. cf. EC 1.1.98.6, ribonucleoside-triphosphate reductase (formate).
Other name
ribonucleotide reductase (ambiguous); 2′-deoxyribonucleoside-triphosphate:oxidized-thioredoxin 2′-oxidoreductase
Production Methods
Fermentation
Package
on customer request
Applications
Research Use
Storage
Should be stored in a dry and cool place, avoiding high temperature.
Appearance / Form
powder or liquid
Odor
Normal microbial fermentation odour.
WARNINGS
Keep sealed after use every time to avoid microbial infections and inactivation of enzymes until its finish.
Description
Microbial enzymes have been used in a large number of fields, such as chemical, agricultural and biopharmaceutical industries. Our enzyme production services are based on bacteria, fungi, and yeast, from strain selection, optimization, and process development to scale-up production.