Enzyme Commission Number
EC 1.1.99.31
Product Overview
High-quality enzyme products.
Well-established quality management system.
Reaction
(S)-mandelate + acceptor = phenylglyoxylate + reduced acceptor
Systematic Name
(S)-mandelate:acceptor 2-oxidoreductase
Function
This enzyme is a member of the FMN-dependent α-hydroxy-acid oxidase/dehydrogenase family. While all enzymes of this family oxidize the (S)-enantiomer of an α-hydroxy acid to an α-oxo acid, the ultimate oxidant (oxygen, intramolecular heme or some other acceptor) depends on the particular enzyme. This enzyme transfers the electron pair from FMNH2 to a component of the electron transport chain, most probably ubiquinone. It is part of a metabolic pathway in Pseudomonads that allows these organisms to utilize mandelic acid, derivatized from the common soil metabolite amygdalin, as the sole source of carbon and energy. The enzyme has a large active-site pocket and preferentially binds substrates with longer sidechains, e.g. 2-hydroxyoctanoate rather than 2-hydroxybutyrate. It also prefers substrates that, like (S)-mandelate, have β unsaturation, e.g. (indol-3-yl)glycolate compared with (indol-3-yl)lactate. Esters of mandelate, such as methyl (S)-mandelate, are also substrates.
Other name
MDH (ambiguous)
Production Methods
Fermentation
Package
on customer request
Applications
Research Use
Storage
Should be stored in a dry and cool place, avoiding high temperature.
Appearance / Form
powder or liquid
Odor
Normal microbial fermentation odour.
WARNINGS
Keep sealed after use every time to avoid microbial infections and inactivation of enzymes until its finish.
Description
Microbial enzymes have been used in a large number of fields, such as chemical, agricultural and biopharmaceutical industries. Our enzyme production services are based on bacteria, fungi, and yeast, from strain selection, optimization, and process development to scale-up production.